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The Sign of the Bridgehead-Bridgehead 1 3C- 1 3C 
Coupling Constant in a Bicyclobutane1 

Sir: 

Our interest in the chemical and physical properties of 
bicyclobutane and derivatives, coupled with our recent suc­
cessful synthesis of diethyl l-methyl-13C-3-phenylbicy-
clo[1.1.0]butane-7,5-13C2-exo,exo-2,4-dicarboxylate (1) 
has allowed us to determine and herein report signs of sev­
eral C-C and C-H coupling constants. The most significant 
of these is the bridgehead-bridgehead 1 3C-1 3C coupling 
constant which we now have determined to be negative by a 
series of off-resonance heteronuclear decoupling experi­
ments as described below. 

Ph 

Table I. 

1JC, « C H 

C2H5OOC 

:c4-
,COOC2H5 

ĉ1-

1 

-C,: 
"N1 

The interest in the sign of this coupling constant stems 
from the notion that this bond contains a very high degree 
of p character3 and, as a result, should have a very small 
coupling constant. This derives from the assumed relation­
ship between the Fermi contact contribution to the coupling 
constant and the product of the s character of the orbitals 
comprising the bond.4 The first such postulated relationship 
(eq I ) 4 could not accommodate a negative coupling con­
stant. Further refinement by Pople and Santry5 led to the 
ability to predict negative coupling constants. 

Coupling 
constant0 Value 

Coupling 
constant" Value 

''C1C3 

' 7 Q C M 

'7CMHM 

-5 .4 ± 0.5 Hz 

+53.2 ± 0.5 Hz 

+129 ± I H z 

V C 3 C M 
V C , H M 

V C 3 H M 

-2 .4 ± 0.5 Hz 

- 7 . 3 ± 0.5 Hz 

+2.7 ± 0.5 Hz 

"See text for explanation of subscripts. 

'./13C-I3C = 0.0550(%SA)(%SB) H Z 
not been useful, however, because it 

(1) 
This has not been useful, however, because it requires 
knowledge of energies and wave functions of excited states. 
Recent developments in spin-spin coupling theory by Pople, 
Mclver, and Ostlund6 have eliminated this requirement. 
Using localized orbitals Schulman and Newton have de­
rived eq 27 '8 

'•/•3C-13C = 0.0621 (%SA)(%SB) - 10.2(±2.4) Hz (2) 

and have predicted negative values for the bridgehead-
bridgehead coupling constants in bicyclobutanes.3b,7~9 

Their perturbation calculations7 show the negative value to 
be the result of small negative values of all three terms—the 
Fermi contact, orbital-dipole, and spin-dipolar contribu­
tions. In fact bicyclobutanes may be unique in this regard 
and might be the only compounds to show a negative 1JcC-7 

The observation of a negative ' J c c therefore is consistent 
with the idea of a negative Fermi contact term and a high 
degree of p character in the bridgehead-bridgehead bond. 
From eq 2, the value of - 5 . 4 Hz for 1JcC, and the assump­
tion that the C i - C 3 bond in 1 is symmetrical, one can calcu­
late that the carbon orbitals which make up this bond are 
hybridized sp10 4. 

Table I lists the appropriate coupling constants,2 includ­
ing signs, as determined by the method of off-resonance he­
teronuclear decoupling. We will designate the nuclei as: C3, 
Ci, C M (methyl carbon), and H M (hydrogens on the methyl 
group). All signs are relative to the C M - H M sign which is 
taken as positive.10 

The carbon magnetic resonance spectrum of 1 consisted 
of overlapping spectra of triply labeled material, three types 
of doubly labeled material, and three types of singly labeled 
compound. This was a result of 90% 13C labeling in Ci and 
C3 and 65% 13C labeling in C M - 2 In addition the proton 
spectrum of the methyl group similarly showed overlapping 
spectra due to these same molecules. 

The off-resonance heteronuclear decoupling technique 
utilized extensively by Jakobsen and co-workers11 has sub­
sequently been used successfully to obtain the relative signs 
of 1 3C-3 1P and 3 1 P- 1 H coupling constants.12 Our experi­
ments involved irradiating the protons at various frequen­
cies in steps as small as 4 Hz around the selective decou­
pling condition while observing the 13C spectrum. The ob­
servations consisted of noting that, for example, low fre­
quency proton irradiation enhanced the low frequency 13C 
doublet of Ci whereas high frequency proton irradiation en­
hanced the high frequency 13C doublet of Cj (in the triply 
13C labeled material). This requires that 'JciCM and 
'•/cMHM have the same sign; that is, since ' J C M H M

 ls posi­
tive, so is 'JCICM- The 13C doublet due to Ci, where Ci and 
C3 are labeled, showed the high frequency 13C peak en­
hanced at lower proton frequency whereas the low frequen­
cy 13C peak was enhanced at high frequency proton irradia­
tion. Thus 1Jc1C3 and 3 JC 3 HM have opposite signs. By obser­
vation of the methyl carbon atom we could determine simi­
larly that ' JCICM and 2JciHM are of opposite sign and 
2 JC 3 CM and 3 JC 3 HM a r e also of opposite sign. Because of the 
small couplings of C3 to the aromatic hydrogens resulting in 
broad peaks we were not able to use this technique further. 
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By observing the methyl proton double-doublet due to la­
beling at Ci and C3 only, and irradiating the carbon 
frequencies in steps from 20 to 2 Hz, we could demonstrate 
that VC3HM a nd 1Jc)C3 have opposite signs, the same result 
as above. More importantly, however, './CiC3 and 2Jc,HM 

were shown to have the same sign by noting that low fre­
quency carbon irradiation enhanced the low frequency pro­
ton peak whereas higher frequency irradiation enhanced the 
high frequency proton peak. Thus the signs are uniquely de­
termined (based on *JCMHM being positive10). 

It should be noted also that placing the 13C irradiating 
frequency to a position 5 ppm more shielded than that car­
bon decoupling frequency needed to reduce the proton dou­
ble-doublet of C1-C3 dilabeled material to a doublet (J = 
7.3 Hz) results in another doublet (J = 2.7 Hz). This 
means the less shielded carbon, C3 (29.02 ppm from 
TMS),2 is coupled to HM with the smaller J while the more 
shielded carbon, Ci (24.02 ppm),2 is coupled to HM by the 
larger J. 

Finally, since little is known about the signs of carbon-
carbon coupling constants13 except that xJcc is posi­
tive514,15 (with the exception of '/ciC3 in bicyclobutane) it 
would be inappropriate to discuss the significance of a nega­
tive 2JC1CM- It should also be noted that as expected,100 the 
signs of ' / C H , 2-A:H, and 37CH alternate. In addition the 
sign of 2 / C H is expected to be negative for a system where 
the H is attached to an sp3 hybridized C which in turn is 
bonded to either an sp2 or sp hybridized C,16 which is the 
case in a l-methylbicyclobutane.3a 

We would also like to point out that all of the signs and 
values for the coupling constants reported agree in sign and 
approximate value with those calculated by Schulman in 1-
methylbicyclobutane using the INDO coupled Hartree-
Fock approxmation.17 
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Lack of Selectivity in the Electrophilic Addition 
of p-Toluenesulfonylnitrene to Tertiary Amines. 
Conformational Equilibrium in JV-Methylpiperidines 

Sir: 

The position of the iV-methyl equilibrium in ./V-methylpi-
peridines (1 =̂* 2) is a problem of considerable current in­
terest.1-3 We report some results obtained by a novel photo­
chemical procedure, the rationale of which has been out­
lined previously.4 

p-Toluenesulfonylnitrene, p-MeC6H4S02N, photochem-
ically generated in situ from the azide, was shown4 in com­
petition experiments not to discriminate between dimethyl 
sulfide and diisopropyl sulfide in the reaction to produce 
iminosulfuranes /?-MeC6H4SC«2N~S+R2, and we have now 
found a similar lack of discrimination between butyl- and 
isobutyldimethylamines in the competitive conversion into 
aminimides /?-MeC6H4S02N~N+Me2R. These quantita­
tive comparisons (rate-constant ratio 1.0:1 in each case5) 
are supported by further examples of lack of selectivity of 
the nitrene probe for competitive additions to nucleophiles 
in systems where precise quantitative assessments are ad­
ventitiously more difficult. There appears to be little if any 
discrimination between dimethyl sulfide and di-/er-butyl 
sulfide despite the ready thermal conversion of the imino-
sulfurane from the latter into the sulfenamide p-MeCf,-
H4S02NHSCMe3 presumably because of internal steric 
compressions. Likewise, the nitrene adds about equally 
readily to each nitrogen atom of 1,2,4-trimethylpiperazine.6 

Our deductions in the sequel are based on the expectation, 
which accords with all our available experimental evidence, 
that /Moluenesulfonylnitrene will be kinetically unselective 
between tertiary piperidine conformers such as 1 and 2 or 5 
and 6 in the reaction to yield diastereoisomeric aminimides. 

From l-methyl-4-te/-f-butylpiperidine (1 ^ 2; R = equa­
torial 4-?-Bu) and the nitrene only one aminimide (formu­
lated as 4; R = equatorial 4-/-Bu) was observed by exami­
nation of the 1H NMR spectrum of the appropriate product 
fractions. We were just able to detect 1% of the diastereo-
isomer 3 in the spectra of calibration mixtures,7 2% being 
very clearly evident. We deduce that the 4-tert-butyl base 
and hence the parent N-methylpiperidine (1 =̂* 2; R = H) 
has no more than about 1% of the conformation 1 with 
axial N-methyl (-AG°30o > 2.7 kcal mol-1 in 
CChFCClF2)8. 1,4-Dimethylpiperidine and the nitrene 
gave mixed diastereoisomeric imides in ratio 22:1, a value 
we interpret in terms of two predominating conformers 2 (R 
= equatorial 4-Me) and 2 (R = axial 4-Me) in the reactant 
base, in ratio controlled by the 4-methyl conformational 
preference, which is presumably similar to that10 of methyl-
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